
5.4 Steady irrotational flow in 2D, Complex Velocity

In this section we write (x1, x2) = (x, y) ∈ R2 and consider planar velocity fields of the
form

v(x, y) =

 u(x, y)
v(x, y)

0

 , (5.9)

where u, v are sufficiently smooth functions.

Given a 2D velocity field, we form the complex velocity function

w(z) = u(x, y)− iv(x, y) for z = x+ iy ∈ C. (5.10)

Now consider the complex contour integral around the closed simple contour γ parametrised
by s ∈ [a, b].∫

γ
w(z) dz =

∫ b

a
(u− iv)

(
dx

ds
+ i

dy

ds

)
ds =

∫ b

a
u
dx

ds
+v

dy

ds
ds+ i

∫ b

a
u
dy

ds
−vdx

ds
ds, (5.11)

hence the real part of the integral is the circulation around the contour γ and the imaginary

part is related to the flow perpendicular to γ. (Note that

( dy
ds

−dx
ds

)
is normal7 to the

contour γ and so the imaginary part of the integral (5.11) is the ‘volume’ flow rate8 across
γ.) Notice, in particular, that if γ is a streamline, then the integrand in the imaginary
part of (5.11) is zero since the velocity field (evaluated on γ)is tangent to γ.

Remark 5.10.

1. The real part of (5.11) gives the circulation of the flow around γ.

2. The integrand in imaginary part of the integral (5.11) is zero if γ is a streamline or the
boundary of a body B immersed in the flow (so that v.n = 0 on ∂B = γ, which implies
that ∂B is a streamline).

3. If s ∈ [a, b] is arc-length, then the imaginary part of (5.11) gives the total volume flow
rate per unit length across γ (viewing γ as the cross-section of a prismatic cylinder with
axis along the x3 (i.e., z) direction).

4. If v corresponds to an incompressible, irrotational flow (so that ∇.v = 0, ∇× v = 0)
then w(z) is analytic (and the contour integral on the left hand side of (5.11) can be
deformed through any region in which W (z) is analytic without changing its value). To
see this, suppose that the flow is incompressible, then

0 = ∇.v =
∂u

∂x
+
∂v

∂y
= 0⇒ ∂u

∂x
=

∂

∂y
(−v) (5.12)

and if the flow is irrotational, then

0 = ∇× v =

 0
0

∂v
∂x −

∂u
∂y

⇒ ∂u

∂y
= − ∂

∂x
(−v) (5.13)

7If s ∈ [a, b] is an arc length parameterisation, then this is an outward unit normal vector to γ.
8If we view γ as the cross-section of a 3D cylindrical domain parallel to the z−axis, then this is the

volume flow rate per unit length.



and so the real and imaginary parts of the complex velocity satisfy the Cauchy-Riemann
equations of complex analysis. Hence, w(z) is a complex analytic function on its domain
of definition.

5. On any simply connected domain (and always on any sufficiently small open disc
around any point), if w(z) is analytic then there exists an analytic function Φ(z) such that
Φ′(z) = w(z).

Example 5.11 (Potential flows).

1. Let α > 0 and let Φ(z) = α log(z) = α (ln(|z|) + i arg(z)) in the cut plane. Then
w(z) = Φ′(z) = α

z . This represents a source at the origin.

2. Let Φ(z) = −iΓ0
2π log(z), then w(z) = Φ′(z) = −iΓ0

2πz .

This represents a point vortex at the origin with circulation Γ0 around the origin.

3. Let Φ(z) = U0

(
z + a2

z

)
so that w(z) = U0

(
1− a2

z2

)
.

This represent flow past a circular cylinder with centre at the origin.

See problems sheet 7 for further details.

Remark 5.12 (Velocity potential and stream function). If the flow is irrotational, then
∇× v = 0 and so

v(x, y) =

 ∂φ
∂x
∂φ
∂y

0

 , (5.14)

where φ(x, y) is the (real) velocity potential.

If we suppose further that the flow is incompressible, then

0 = ∇.v =
∂2φ

∂x2
+
∂2φ

∂y2
= ∆φ, (5.15)

and so φ is harmonic.

Notice that if we do not assume that the flow is irrotational, then by a result from vector
calculus, the incompressibility condition ∇.v = 0 implies the existence of a scalar function
ψ called the stream function such that

∇×

 0
0
ψ

 =

 ψy
−ψx

0


and hence

∇× v = ∇×

 ψy
−ψx

0

 =

 0
0
−∆ψ


is the corresponding vorticity. In particular, if the flow is also irrotational, then ψ is
harmonic.

5.5 Flow past an immersed body

Consider flow in a 2D domain external to a connected set B (corresponding to a body
immersed in the flow). Consider a 2D velocity field and form the complex velocity function



w(z). If we parametrise the boundary of B as (x(s), y(s)) using arc length s ∈ [a, b] as the
parameter, then the vector field ( dx

ds
dy
ds

)
(5.16)

is the unit tangent vector to ∂D and hence( dy
ds

−dx
ds

)
(5.17)

is the outward pointing normal unit vector to B on ∂B.

On the boundary of the body B there is no normal component of velocity and so9

0 = v.n =

(
u(x, y)
v(x, y)

)
.

( dy
ds

−dx
ds

)
. (5.18)

Now, by (5.11) and Cauchy’s Theorem, the complex contour integral

∫
γ
w(z) dz =

∫
∂B
w(z) dz =

∫ b

a
u
dx

ds
+v

dy

ds
ds+i

∫ b

a
u
dy

ds
−vdx

ds
ds = Circulation around ∂B.

(5.19)

Theorem 5.13 (Blasius Theorem). Let B denote the region occupied by a body immersed
in a steady 2D irrotational, incompressible flow. Let

F =

(
Fx
Fy

)
be the force exerted by the fluid on the body. Let w(z) be the complex velocity corresponding
to the flow. Then

Fx − iFy =
iρ0

2

∮
∂B

(w(z))2 dz.

Proof. By (5.11) and since

u
dy

ds
− vdx

ds
= 0 on ∂B (5.20)

(note v.n = 0 on ∂B, so that ∂B is a streamline), it follows that on ∂B

w(z)
dz

ds
= u(x(s), y(s))

dx(s)

ds
+ v(x(s), y(s))

dy(s)

ds
ds.

Hence on ∂B:

(w(z))2dz(s)

ds
= (u− iv)

(
u
dx

ds
+ v

dy

ds

)

= u2dx

ds
+ uv

dy

ds
− i
(
uv
dx

ds
+ v2dy

ds

)
9Hence ∂B is a streamline.



and using (5.20) now yields

= (u2 + v2)

(
dx

ds
− idy

ds

)
. (5.21)

By an earlier discussion (see Remark 4.7), the force on the body is given by

F =

(
Fx
Fy

)
=

∫
∂B
−Pn ds =

∫ b

a
−P

( dy
ds

−dx
ds

)
ds,

where s denotes arc-length and we have used the fact that the Cauchy stress tensor is
given by T = −PI for an ideal fluid. Hence

Fx − iFy = −
∫ b

a
P

(
dy

ds
+ i

dx

ds

)
ds =

1

2
iρ0

∫
∂B

(u2 + v2)

(
dx

ds
− idy

ds

)
ds,

where we have used Bernoulli’s Theorem that P
ρ0

+ 1
2

(
u2 + v2

)
= H0 (a constant) and that

the integral of the constant H0 around a closed contour is zero. Comparing this expression
with (5.21) completes the proof.

Remark 5.14. We can use Blasius Theorem together with the residue theorem to compute
the force on objects immersed in a flow.

Remark 5.15 (D’Alembert’s Paradox.). This follows on applying Blasius’ Theorem to the
flow in part 3 of Example 5.11. The contour integral in Blasius’ Theorem can be calculated
using Cauchy’s Residue Theorem and it can be shown that the total force on the cylindrical
body due to the flow is zero.

Remark 5.16. We can add together the complex velocity potentials for simple flows to
produce more complicated flows. For example,

Φ(z) = U0

(
z +

a2

z

)
− iΓ0

2π
log(z),

with a > 0, Γ0 > 0, represents flow around a cylinder of radius a with circulation Γ0

around the disc of radius a (considered as the cross-section of the cylinder). In this case
Blasius’ Theorem shows that there is a lift force on the cylinder per unit length due to the
circulation.



6 Structure of the Euler Equations

Our approach in this section is take the incompressible Euler equations

∂vi
∂t

(x, t) + vk(x, t)
∂

∂xk
vi(x, t) = − 1

ρ0

∂P

∂xi
(x, t) (6.1)

∂vk
∂xk

(x, t) = 0 (6.2)

and differentiate the momentum balance equations with respect to xj to yield

∂2vi
∂t∂xj

(x, t) +
∂vk
∂xj

∂vi
∂xk

+ vk
∂

∂xk

(
∂vi
∂xj

)
= − 1

ρ0

∂2P

∂xi∂xj
(x, t).

If we write Γ = (Γij) =
(
∂vi
∂xj

(x, t)
)

for the velocity gradient tensor, then we see that Γ

satisfies
DΓij
Dt

+
(
Γ2
)
ij

= − 1

ρ0

∂2P

∂xi∂xj
(x, t) (6.3)

and the incompressibility condition (6.2) yields

tr (Γ) = Γkk = 0. (6.4)

Now decompose Γ = S+W into the sum of the rate of stretch tensor S = 1
2

(
Γ + ΓT

)
and

spin tensor W = 1
2

(
Γ− ΓT

)
and substitute into (6.3) to yield

D

Dt
(Sij +Wij) +

(
S2 +W 2 + SW +WS

)
ij

= − 1

ρ0

∂2P

∂xi∂xj
(x, t). (6.5)

Next note that(
S2 +W 2

)T
=
(
STST +W TW T

)
=
(
S2 + (−W )2

)
=
(
S2 +W 2

)
and hence

(
S2 +W 2

)
is symmetric.

Also

(SW +WS)T =
(
W TST + STW T

)
= ((−W )S + S(−W )) = − (SW +WS)

and hence (SW +WS) is skew symmetric.

Now take the symmetric and skew-symmetric parts of (6.5) to obtain

DSij
Dt

+
(
S2 +W 2

)
ij

= − 1

ρ0

∂2P

∂xi∂xj
(x, t) (6.6)

and
DWij

Dt
+ (SW +WS)ij = 0 (6.7)

and the incompressibility condition (6.4) becomes

trS = Skk = 0 (6.8)

(since trW = Wkk = 0).



Remark 6.1. Recall that the (skew-symmetric) spin tensor W is related to the vorticity
ω = ∇× v(x, t) by

ωi = (∇× v)i = εijk

(
∂vk
∂xj

)
=

1

2
εijk

∂vk
∂xj
− 1

2
εikj

∂vk
∂xj

= εijk
1

2

(
∂vk
∂xj
− ∂vj
∂xk

)
= εijkWkj .

Conversely, since 2Wa = ω × a, ∀a ∈ R3, it follows that

2Wij = εikjωk.

Proposition 6.2. The system (6.7) is equivalent to the vorticity equation

Dω

Dt
= Γω = Sω. (6.9)

Proof. The idea is to use Remark 6.1 to show that (6.7) implies (6.9) and to note that the
steps in this argument can be reversed to show the converse implication.

Notice first that

Γω = (S +W )ω = Sω +Wω = Sω +
1

2
ω × ω = Sω

and so the two expressions on the righthand side of (6.9) are clearly equivalent.

Now multiply expression (6.7) by εmji and use Remark 6.1 to obtain

Dωm
Dt

+ εmji (SW +WS)ij = 0

We next show that εmji (SW +WS)ij = −(Sω)m which will complete the proof. To see
this, use Remark 6.1 again to obtain

εmji(SW )ij = εmji

(
Sik

[
1

2
εknjωn

])
=

1

2
εjimεjknSikωn =

1

2
[δikδmn − δinδmk]Sikωn

=
1

2
Siiωm −

1

2
Simωi = −1

2
Smiωi = −1

2
(Sω)m ,

where we have used the symmetry of S and (6.8).

A similar argument shows that

εmji(WS)ij = −1

2
(Sω)m .

Hence we obtain that
εmji (SW +WS)ij = − (Sω)m ,

which completes the proof.

Theorem 6.3 (Constructing exact solutions.). Let S̄(t) be a real symmetric 3× 3 matrix
with tr(S̄(t)) = 0. Determine the vorticity ω̄ from the system of ordinary differential
equations

dω̄(t)

dt
= S̄(t)ω̄(t), ω̄(0) = ω0 ∈ R3 (6.10)

(and the equivalent spin tensor from 2Wij = εikjω̄k(t)). Then

v̄(x, t) =
1

2
ω̄(t)× x + S̄(t)x = W̄ (t)x + S̄(t)x (6.11)

is an exact solution of the 3D Euler equations with corresponding pressure

P̄ (x, t) = −1

2
xixj

[
˙̄Sij +

(
S̄2 + W̄ 2

)
ij

]
ρ0 (6.12)



The proof of this result follows by:

1. Showing that S̄, W̄ , P̄ satisfy (6.6), (6.7),(6.8). In showing this, we use the fact that
(6.7) is equivalent to the vorticity equations (6.9) by Proposition 6.2. We then note that
(6.10) guarantees that (6.9) is satisfied since ω̄ is independent of x.

2. Having shown that (6.9) (and hence (6.7)) is satisfied, we then use (6.6) to define the
corresponding pressure field. The assumption trS̄ = 0 guarantees that (6.8) is satisfied.

3. Since S̄ + W̄ = Γ̄ = ∇v̄ is independent of x it will follow that

v̄(x, t) = S̄(t)x + W̄ (t)x

satisfies (6.1), (6.2).

Remark 6.4. See problem sheet for an example of a flow of the form given in the last
theorem. Notice also that in (6.12) the term xi(S

2)ijxj = ||Sx||2 and is therefore positive
definite whilst, in contrast, the term xi(W

2)ijxj = −||Wx||2 is negative definite.



7 Cartesian Tensors

We work in the three-dimensional Euclidean vector space E3. Let A = {e1, e2, e3}
be a given (fixed) basis which is orthonormal with respect to the given inner-product

〈·, ·〉 : E3 × E3 → R on E3. (i.e. A is a basis for E3, and 〈ei, ej〉 =

{
1 if i = j
0 if i 6= j

⇒ ‖ei‖ = 〈ei, ei〉
1
2 = 1 for i = 1, 2, 3).

A key principal in the modelling of continuous media (e.g. fluids, solids) is that the
form and structure of properly formulated equations describing physical systems, and the
relationship between physical quantities, should not depend on the choice of the cartesian
coordinate system of the observer.

Terminology: A cartesian frame is a choice of origin together with a right-handed or-
thonormal basis/coordinate system.

The next few subsections recall the transformation properties of the components of a
vector and of the matrix representing a linear transformation under a change of cartesian
frame and will motivate our general treatment of cartesian tensors in section 7.4.

7.1 Matrix representation of a linear transformation

Let σ : E3 → E3 be a linear transformation and let A = {e1, e2, e3}, Ã = {ẽ1, ẽ2, ẽ3}
be bases for E3. Then the (3 × 3) matrix A = (aij) ∈ M3×3 representing the linear
transformation:

σ : (E3,A)→ (E3, Ã)

is defined by the relation:
σ(ej) = aij ẽi

(j is a dummy index, and i is a free index)

7.2 Effect of a Change of Orthonormal Basis on the Components Rep-
resenting a Vector

Let A = {e1, e2, e3}, Ã = {ẽ1, ẽ2, ẽ3} be orthonormal bases for E3. Let Q = (qij) ∈M3×3

represent the identity map id : (E3,A)→ (E3, Ã) (i.e. id(v) = v, ∀v ∈ E3), i.e.,

id(ei) = ei = qjiẽj (∗)

Then given x ∈ E3, x = xiei = xi(qjiẽj) = (qjixi)ẽj = x̃j ẽj , where

x̃j = qjixi ⇐⇒

x̃1

x̃2

x̃3

 = Q

x1

x2

x3


Proposition 7.1. The change of bases matrix Q above is an orthogonal matrix.



Proof.

if i 6= j 0
if i = j 1

}
= 〈ei, ej〉 = 〈qliẽl, qkj ẽk〉 by (*)

= qli〈ẽl, qkj ẽk〉
= qliqkj〈ẽl, ẽk〉
= qkiqkj (only non-zero terms when l = k)

= (QT )ik(Q)kj = (QTQ)ij

Remark 7.2. Notice from the proof (see (*)) that for each i, 〈ei, ẽk〉 = 〈qjiẽj , ẽk〉 =
qji〈ẽj , ẽk〉 = qki. Hence the ith−column of Q consists of the components of the ei in the
basis Ã. Similarly, the jth row of Q consists of the components of ẽj in the bases A.
Hence, ẽj = qjkek.

Terminology

If the matrix Q ∈ O(3) (orthogonal 3× 3 matrices) satisfies detQ = 1 (i.e., if Q ∈ SO(3)-
the group of special orthogonal matrices), then Ã is said to be oriented in the same sense
as A.
If detQ = −1, then we say that Ã is oriented in the opposite sense to A.
If Ã , A are oriented in the same sense, then there is a rotation mapping ei → ẽi.
If they are oriented in opposite senses, then we need a rotation and a reflection in general.

7.3 Effect of Change of Orthonormal Basis on the Matrix Representing
a Linear Transformation

Let σ : E3 → E3 be a linear transformation. Let A = {e1, e2, e3}, Ã = {ẽ1, ẽ2, ẽ3} be
orthonormal bases for E3. Let A ∈M3×3 represents σ : (E3,A)→ (E3,A). Let Ã ∈M3×3

represent σ : (E3, Ã)→ (E3, Ã). Let Q ∈ O(3) represents id : (E3,A)→ (E3, Ã).

(E3,A)
σ;A //

id;Q
��

(E3,A)

(E3, Ã)
σ;Ã

// (E3, Ã)

id;QT

OO

Hence σ = id o σ o id is represented by A = QT ÃQ ⇐⇒ Ã = QAQT . Hence,

ãij = qikaklqjl = qikqjlakl

7.4 Cartesian Tensors

From now on we work only with Cartesian frames (i.e., with coordinates corresponding to
right-handed orthonormal bases for E3).

In this case, suppose that x1, x2, x3 and x̃1, x̃2, x̃3 are coordinates corresponding to the
(right-handed) orthonormal bases A = {e1, e2, e3} and Ã = {ẽ1, ẽ2, ẽ3}, where ẽi = qijej ,



Q = (qij) ∈ SO(3). Then we have seen that the 31 = 3 components x1, x2, x3 of a vector
x ∈ E3 in the basis A transform according to

x̃i = qijxj ,

under the change of basis from A to Ã.

Similarly, the 32 = 9 entries in the matrix A = (aij) ∈ M3×3 representing the linear
transformation σ : (E3,A)→ (E3,A) transform according to

ãij = qikqjl akl,

where Ã = (ãij) ∈M3×3 represents σ : (E3, Ã)→ (E3, Ã).

Definition (Cartesian Tensor)

A cartesian tensor T of order n is represented in a cartesian frame, with right-handed
orthonormal basis A = {e1, e2, e3} for E3, by 3n associated components, denoted Ti1i2...in
(n-indices), where each suffix takes the value 1, 2 or 3.

These elements transform according to

T̃i1i2...in = qi1j1qi2j2 ...qinjnTj1j2...jn

for each Q = (qij) ∈ SO(3), where T̃i1i2...in are the components of the tensor T in the

right-handed orthonormal basis Ã = {ẽ1, ẽ2, ẽ3}, with ẽi = qijej .

Remarks

1. The term cartesian tensor of order n is sometimes abbreviated to CTn.

2. We can think of the components of T as the entries in a multi-dimensional matrix.

3. The (confusing) terminology “cartesian tensor of rank n” is also sometimes used in the
literature.



Examples.

1. A CT0 is called a scalar invariant.

(i) Any constant α ∈ R is clearly a CT0 (since α̃ = α).

(ii) For x = xiei,y = yjej ∈ E3, the expression xiyi (= 〈x,y〉) is a scalar invariant.

Proof. For Q = (qij) ∈ SO(3),

x̃iỹi = (qikxk)(qilyl) = qikqilxkyl = (QTQ)klxkxl = xkyk.

(iii) Let φ : [0,∞) → R, then φ
(
(x1)2 + (x2)2 + (x3)2

)
is a scalar invariant (this follows

from (ii) above on setting y = x).

2. A CT1

(i) Any vector x = xiei ∈ E3 is a CT1 since its components transform according to
x̃i = qijxj , Q = (qij) ∈ SO(3) under the change of cartesian frame from A = {e1, e2, e3}
to Ã = {ẽ1, ẽ2, ẽ3}, ẽi = qijej .

(ii) Consider a smooth function φ(x1, x2, x3) of the coordinates in the basisA = {e1, e2, e3}.
We define the gradient of φ by ∇φ = ∂φ

∂xi
ei, then ∇φ is a CT1. (See problem sheet 1.)

3. A CT2

Any linear transformation σ : E3 → E3 corresponds to a CT2, since the 32 entries in
the matrix A = (aij) ∈ M3×3 representing σ : (E3,A) → (E3,A) in the right-handed
orthonormal basis A = {e1, e2, e3} transform according to ãij = qikqjlakl for Q = (qij) ∈
SO(3) under the change of cartesian basis from A to Ã = {ẽ1, ẽ2, ẽ3}, where ẽi = qikek.



7.5 Examples of cartesian tensors

Kronecker Tensor

Recall that the Kronecker delta denoted δij is defined by

δij =

{
1 if i = j
0 if i 6= j

.

The Kronecker tensor is a CT2 defined, in any cartesian frame A = {e1, e2, e3} by the
components Tij = 〈ei, ej〉 = δij . To see that it is a CT2, notice that if Ã = {ẽ1, ẽ2, ẽ3}
corresponds to another cartesian frame with ẽi = qijej , Q = (qij) ∈ SO(3), then

T̃ij = 〈ẽi, ẽj〉 = 〈qikek, qjlel〉 = qikqjl〈ek, el〉 = qikqjlTkl.

Moreover, since
qikqjlTkl = qikqjlδkl = qikqjk = δij = Tij ,

it further follows that T̃ij = Tij and we say that this tensor is isotropic.

Definition. A tensor is isotropic if all its components are unchanged under a change of
cartesian frame.

In fact, it can be shown that, up to multiplication by a scalar, this is the only isotropic
CT2.

The Alternating Tensor

Recall the alternating symbol εijk defined earlier in the course. The alternating tensor
is a CT3, defined in the cartesian frame A = {e1, e2, e3} by the components

Tijk = 〈ei, ej × ek〉 = εijk.

To see that it is a CT3, notice that if Ã = {ẽ1, ẽ2, ẽ3} corresponds to another cartesian
frame with ẽi = qijej , Q = (qij) ∈ SO(3), then

T̃ijk = 〈ẽi, ẽj × ẽk〉 = 〈(qilel), (qjmem × qknen)〉 = qilqjmqkn〈el, em × en〉 = qil qjmqknTlmn,

so the Tijk are elements of a CT3.

Moreover, since
qilqjmqknTlmn = qilqjmqknεlmn = εijk = Tijk,

it further follows that T̃ijk = Tijk and so this tensor is isotropic. It can be shown that, up
to multiplication by a scalar, this is the only isotropic CT3.

7.6 Elementary Operations with Cartesian Tensors

Linear Combinations.

Let S , T be CTn’s. Then, given α, β ∈ R, we define
(
αS + βT

)
i1..in

= αSi1...in +βTi1...in .
It is easily verified that the left hand side terms are components of a CTn.



Contraction of Indices.

Let T be a CTn with components Tijk.... If we set any two of the free indices equal (thereby
effecting a sum) then the resulting elements are components of a CT(n-2).

Proof. Since T is a CTn, given (qij) ∈ SO(3), it follows that

T̃ijkl... = qirqjsqktqlu.....Trstu... .

Now set j = k to obtain

T̃ikkl... = qirqksqktqlu...Trstu... = qirqlu...Trkku... (since qksqkt = (QTQ)st = δst )

Hence, Sil... = Tikkl... are the components of a CT(n-2).

Example.

Let Tij be components of T which is a CT2. Then Tii is called the trace of T , and the
trace of T is a CT0 (i.e., a scalar invariant).

Product of Cartesian Tensors.

If T is a CTn and S is a CTm, then defining

Ui1...i(n+m)
= Ti1...inSi(n+1)...i(n+m)

yields the components of a CT(n+m).

Proof. Let Q = (qij) ∈ SO(3), then

qi1j1 ... qi(n+m)j(n+m)
Uj1...j(n+m)

= qi1j1 ... qinjnTj1...jn qi(n+1)j(n+1)
.... qi(n+m)j(n+m)

Sj(n+1)...j(n+m)

and, since S , T are both cartesian tensors it follows that this equals

T̃i1...inS̃i(n+1)...i(n+m)
= Ũi1...i(n+m)

.

Hence Ui1...i(n+m)
are components of a CT(n+m).

Tensor Gradient. Suppose that Ti1...in are components of T , a CTn. Suppose further
that these components are functions of the coordinates x1, x2, x3 in the cartesian basis
A = {e1, e2, e3}. Define

Si1...ink =
∂

∂xk
Ti1...in .

Then Si1...ink are components of a CT(n+1).

Proof. Since T is a CTn, T̃i1...in = qi1j1 ...qinjnTj1j2...jn for any Q = (qij) ∈ SO(3).
Hence, by the chain rule,

∂

∂x̃k
T̃i1...in = qi1j1 ...qinjn

∂

∂xm
(Tj1j2...jn)

∂xm
∂x̃k

.



However, x̃k = qklxl ⇔ xm = qkmx̃k, so ∂xm
∂x̃k

= qkm and hence

∂

∂x̃k
T̃i1...in = qi1j1 ...qinjnqkm

∂

∂xm
(Tj1j2...jn) .

Hence S̃i1...ink = qi1j1 ...qinjnqkmSj1...jnm which shows that Si1...inm are components of a
CT(n+1).

Remark.(Differentiating with respect to a time-like parameter.) Suppose that the com-
ponents Ti1...in of a CTn depend not only on the components x1, x2, x3 in the cartesian
frame basis A = {e1, e2, e3} but also on an independent parameter t (e.g., representing
time). Then for each (qij) ∈ SO(3) we have that

d

dt

(
T̃i1...in

)
= qi1j1 ...qinjn

d

dt
(Ti1...in)

and so

Ṫi1...in =
d

dt
(Ti1...in)

are the components of a CTn.

Symmetric and Skew (Anti) Symmetric Cartesian Tensors of order 2

If T is a CT2 with components Tij in the cartesian basis A = {e1, e2, e3}, then T is said
to be symmetric if Tij = Tji.

Notice in this case, T̃ij = qilqjmTlm = qilqjmTml = qjmqilTml = T̃ji, for Q = (qij) ∈ SO(3)
and so symmetry is independent of the choice of cartesian coordinate frame.

Similarly, T is said to be skew (or anti) symmetric if Tij = −Tji. Again this definition can
be shown to be independent of the choice of cartesian coordinate frame.

The components of any CT2 T , can be expressed as Tij = 1
2(Tij + Tji) + 1

2(Tij − Tji) =
Eij+Wij , where Eij ,Wij are the components of a symmetric tensor E and skew symmetric
tensor W.



The Quotient Rule for Cartesian Tensors.

Special Case.

Suppose that a mathematical object has the property that, given any cartesian frame
(using components x1, x2, x3, in the right-handed orthonormal basis A = {e1, e2, e3}) it
can be represented by 32 = 9 quantities aij (which will in general be given by ãij in a
different cartesian frame using components x̃1, x̃2, x̃3 in the right-handed orthonormal basis
Ã = {ẽ1, ẽ2, ẽ3}). Suppose further that for all vectors (i.e, any CT1) v = viei ∈ E3 the
wi = aijvj are the components of a vector (i.e., a CT1). Then the aij are the components
of a CT2.

Proof.

Suppose that Q = (qij) ∈ SO(3) and that under the corresponding change of cartesian
frame A = {e1, e2, e3} → Ã = {ẽ1, ẽ2, ẽ3} we have aij → ãij , vi → ṽi, wi → w̃i. Then,
by assumption,

ãij ṽj = w̃i .

Hence, since v, w are cartesian tensors, it follows that

ãij (qjlvl) = qimwm = qim (amkvk) .

Thus
(ãijqjl − qimaml) vl = 0

for any vector v, and so
ãijqjl = qimaml.

Hence, multiplying both sides by qtl yields

ãijqjlqtl = qimqtlaml ⇒ ãit = qimqtlaml (since qjlqtl = δjt).

Thus the elements aij are the elements of a CT2.



The Quotient Rule for Cartesian Tensors (General Version)

Suppose that a mathematical object has the property that, for any given Cartesian co-
ordinate system (coordinates X1, X2, X3, in the right-handed orthonormal basis A =
{e1, e2, e3}), it can be represented by 3n+m quantities

ai1i2...imj1j2...jn (†)

(which will in general vary according to the chosen basis). Suppose further that for any
CTn V, with components Vj1...jn , the quantities

Wi1...im = ai1...imj1...jnVj1...jn

are the components of a CTm. Then the ai1...imj1...jn are the components of a CT(n+m).

Proof. Consider a change of Cartesian frame corresponding to (qij) ∈ SO(3), from the
Cartesian basis A to the Cartesian basis Ã = {ẽ1, ẽ2, ẽ3}. Then the expression (†) trans-
forms to

ãi1...imj1...jn Ṽj1...jn = W̃i1...im = qi1j1qi2j2 ...qimjmWj1...jm

since W is a CTm by assumption. Hence, since V is also a CTn, it follows using (†) that

ãi1...imj1...jnqj1k1qj2k2 ...qjnknVk1...kn = qi1j1qi2j2 ...qimjmWj1...jm

⇒ ãi1...imj1...jnqj1k1qj2k2 ...qjnknVk1...kn = qi1j1qi2j2 ...qimjmaj1...jmk1...knVk1...kn

Hence

[ãi1...imj1...jnqj1k1qj2k2 ...qjnkn − qi1j1qi2j2 ...qimjmaj1...jmk1...kn ]Vk1...kn = 0

holds for all choices of Vk1...kn and hence

[ãi1...imj1...jnqj1k1qj2k2 ...qjnkn − qi1j1qi2j2 ...qimjmaj1...jmk1...kn ] = 0

Multiplying the above expression by qt1k1 ...qtnkn (and using the summation convention
and noting that qt1k1qj1k1 = δt1j1 , qt2k2qj2k2 = δt2j2etc. ) we obtain

ãi1...imt1...tnqi1j1qi2j2 ...qimjmqt1k1 ...qtnknaj1...jmk1...kn = 0

or, equivalently, ãi1...imt1...tn = qi1j1qi2j2 ...qimjmqt1k1 ...qtnknaj1...jmk1...kn , which proves that
that the ai1...imt1...tn are the components of a CT(m+n).

Example:

n = 1,m = 0, x× y = εijkxjykei. Given any z = ziei ∈ E3, then let ai = εijkxjyk. Then

aizi =

∣∣∣∣∣∣
z1 z2 z3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ is a CT0 (see sheet 2, Q1). Hence, by the quotient rule, the ai are

components of a CT1, i.e. x× y is a vector.



8 Basic results from Linear Algebra

Theorem 8.1. Let A ∈M3×3 be symmetric (i.e. AT = A). Then, we have:

1) All eigenvalues of A are real, we define these as λ1, λ2, λ3 (possibly repeated)

2) There is an orthonormal basis for R3 consisting of corresponding eigenvectors v1,v2,v3

(i.e. Avi = λivi, 〈vi,vj〉 = vi · vj = δij).

Proposition 8.2. If A ∈ M3×3 is symmetric with eigenvalues λ1, λ2, λ3 and corre-
sponding orthonormal eigenvectors v1,v2,v3. Then ∃Q ∈ SO(3) such that QTAQ =
diag(λ1, λ2, λ3) =: D.

Sketch proof: Define Q := [v1,v2,v3]. Then AQ = [Av1, Av2, Av3] = [λ1v1, λ2v2, λ3v3] =
[v1,v2,v3] = D.

Now QTQ = I and so QTAQ = D. Without loss of generality, Q ∈ SO(3) (if detQ = −1,
then replace v1 with −v1)

Theorem 8.3 (Spectral Decomposition Theorem). Let A ∈ M3×3 be symmetric with
eigenvalues λ1, λ2, λ3 and let v1,v2,v3 be an orthonormal basis for R3 of corresponding
eigenvectors. Then A = λ1v1⊗v1 +λ2v2⊗v2 +λ3v3⊗v3. (Note: (c⊗d)(x) = 〈d,x〉c.)

Proof. If x ∈ R3, then x =
∑3

i=1〈x,vi〉vi. Hence

Ax =
3∑
i=1

〈x,vi〉Avi =
3∑
i=1

λi〈x,vi〉vi =
3∑
i=1

λi(vi ⊗ vi)(x) (8.1)

= (
3∑
i=1

λivi ⊗ vi)(x) (8.2)

Since x was arbitrary, the result follows.

Corollary 8.4. For k ∈ N, Ak =
∑3

i=1 λ
k
i vi ⊗ vi. This representation extends to k ∈ Z

provided λi 6= 0, ∀i = 1, 2, 3.

Theorem 8.5 (Square root theorem). Let C be a symmetric, positive definite n×n matrix.
Then there exists a unique positive definite symmetric matrix U such that C = U2. (We

write C
1
2 = U .)

Proof. Let

C =

n∑
i=1

λivi ⊗ vi

be the spectral decomposition of C. Notice that since C is positive-definite, all its eigen-
values are positive. Now define

U =

n∑
i=1

λ
1
2
i vi ⊗ vi,

then U is symmetric and positive-definite and satisfies U2 = C.



Theorem 8.6 (Polar decomposition theorem). Let F satisfy detF > 0. Then there exists
R ∈ SO(n) and positive definite symmetric matrices U, V such that F = RU = V R.

Proof. Let C = F TF , then C is symmetric since CT = (F TF )T = F TF = C and so by
the square root theorem, there exists a unique symmetric positive-definite square root U
(so that C = U2).

Now define R = FU−1, then

RTR = (FU−1)T (FU−1) = U−TF TFU−1 = U−1CU−1 = I

So R is orthogonal and R ∈ SO(n). By construction, we see that this decomposition is
unique.

A similar proof working with C = F F T yields the (unique) decomposition F = V R̃
with V positive-definite and symmetric and R̃ ∈ SO(n). To see that R̃ = R, notice that
F = R̃R̃TV R̃, where R̃TV R̃ is positive-definite and symmetric and so by the uniqueness
of the decomposition C = RU it follows that R = R̃ and U = R̃TV R̃.


